Predicting Social Network Check-in Locations:
Noise Impact Reduction for Classification

Elnaz Jedari Fathi
Department of Computer Science
Southern Illinois University
Carbondale, Illinois 62901
e.fathi@siu.edu

Abstract—Since 2010, Facebook has entered the self-reported
positioning world by providing the check-in service. This service
allows users to share their physical location. Over the years, big
datasets of recorded check-ins have been collected with increasing
popularity of social networks. Analyzing the check-in datasets
reveals valuable information and patterns in users’ check-in
behavior as well as places’ check-in history. In this work, we
intend to create a prediction model to predict the next check-
in place only based on places history and with no reference
to individual users. To this end, we learned that the check-
in data has a high level of noise in location coordinates. The
main research objective of this work is how to leverage a noise
impact reduction technique to enhance performance of prediction
model. We designed and developed our own noise handling
mechanism to deal with feature noise. This work represents how
the performance of predictors is enhanced by minimizing noise
impacts.

I. INTRODUCTION

Many social networking services, such as Foursquare,
Twitter and Facebook, provide users an option referred
to as self-reported positioning [1], [2] which is known as
“check-in” among users. Facebook check-in data is one of
the largest collection of check-in activities. Analytical results
of mining these location-based datasets reveal patterns of
user behavior and place check-in history. Extracting this
knowledge and predicting location check-in traits are utilized
in business and financial decisions [3], but also are helpful in
many scientific pursuits as well.

Check-in prediction models can be generated by analyzing
either users’ behavior [4] or places’ history. Both approaches
generate a prediction model for check-in locations. In this
paper, we study a big dataset of recorded check-ins in
Facebook application based on place history and with no
concept of person [5]. There are about 29 million rows in the
dataset and each row represents a check-in event. We intend
to classify all check-in instances into categories which are
places. Therefore, this is a multi-classification problem with
a large number of predefined classes (categories). There are
various machine learning algorithms to solve classification
problems. However, most algorithms require well-defined data
to efficiently learn and extract patterns from training dataset.
Real-world datasets are influenced by many factors that can
affect the quality of the dataset [6], [7], [8]. The source of data
is one of the significant factors [9]. In check-in datasets, the

Shahram Rahimi
Department of Computer Science
Southern Illinois University
Carbondale, Illinois 62901
rahimi @cs.siu.edu

Dunren Che
Department of Computer Science
Southern Illinois University
Carbondale, Illinois 62901
dche@cs.siu.edu

source of data is location signals, coming from users’ mobile
devices where not 100% are accurate. One of the reasons is
that users desire to check in from different distances away
from the place’s physical location. Additionally, GPS signals
received by mobile devices are not always consistent. These
factors along with other similar factors prevent the data from
always being well-defined, thus noise and outlier instances
appear in datasets. The presence of noise in data mining
datasets mislead the learning process of machine learning
algorithms and accordingly reduces the performance of the
generated prediction model. Hence, variable noise handling
approaches are studied in the literature.

In this work, we present a noise detection and cleansing
approach for location-based data classifications. We show
how the predictors’ performance is enhanced by applying
our noise impact reduction mechanism. After enhancing the
dataset quality, a machine learning algorithm can be trained
on the data and generate a predictive model for the target
value. Despite the selected learning algorithm, the generated
model should provide a better performance compared to
models trained in noisy environment.

This work is organized into the following sections. Section II
presents a brief overview on noise impacts and handling
approaches in classification tasks along with related works.
In section III the dataset is described and its features
and characteristics are explored. Section IV provides the
preprocessing noise handling technique and describes how
we clean noise instances prior to the training process. In
section V, Random Forest classification methodology is
examined to provide performance evaluation of the noise
cleansing technique. Section VI concludes the study.

II. NOISE IMPACTS AND HANDLING APPROACHES IN
LITERATURE

Check-in datasets include location-based data that are
typically polluted with high levels of noise because their
data collection source comes from users mobile devices.
Inconsistent GPS signals and users desire to check in from
different distances away from the places are two factors
causing location noise appearance in dataset. As a result, it

becomes more difficult to define the borderline of the places
(classes) while classification process tightly depends on how
well the borderline of classes are defined. Classification
algorithms can simply fail in the presence of large amount of
noise [8].

Experiments in the literature show the presence of noise in
data mining datasets misleads the learning process of machine
learning algorithms and accordingly reduces the performance
of the generated predictive model. The consequence of noise
on classification performances is the most frequently reported
issue [8]. Hence, noise handling approaches in classification
are widely studied in the literature. Some algorithm such
as Random Forest [10] or Decision Tree [11] with pruning
can justify their learning process in the presence of noise;
however, in real world with big data that are normally
complicated by inaccurate and noisy instances, they barely
can overcome the noise misleading impacts. Therefore, a
preprocessing technique or outlier detection function normally
is required to clean noise instances before or during the
training process.

In [8], authors provide a comprehensive investigation on
noise handling methodologies in literature. They distinguish
three types of methods to deal with noise: 1) Noise-robust
algorithms, 2) Noise-tolerant algorithms, and 3) Noise
cleansing methods. The first two approaches deal with noise
in learning algorithm during training process and normally
results in higher time and complexity cost. On the other
hand, the third type approaches are preprocessing filtering
methods which detect noise instances and deal with them
before sending the data to training process. In this work, the
third approach is utilized and a noise cleansing method is
introduced which is a fast and scalable noise preprocessing
method. This method is applicable to large datasets such as
the one used in this research.

An example of preprocessing noise cleansing method is
classification filtering approach which is utilized in [12].
Two different classifiers are trained and combined to vote
for misleading instances. Misclassified instances in both
classifiers are marked as noise and eliminated from training
set. The noise elimination cause loss of the information stored
in other features. In high noise level datasets, the information
loss becomes more critical. Therefore, our goal is to not
eliminate detected noise instances; instead, we replace noise’s
misleading values with correct or representative values.
Moreover, there are many kNN-based noise detection
algorithms in literature that are based on nearest neighbor
editing rules. A survey of these algorithms is included in
[13]. Summarized kNN-based algorithms in this work are
basically a modified version of ENN [14] algorithm. As it is
addressed in [13], the major problem of these algorithms is
their usage of memory and storage in the process of noise
detection and also the need to reduce the number of flagged
instances by providing new additional rules.

A quantitative study of noise is accomplished in [9] that
is been attracted by many researchers. The authors of
[9] consider preprocessing mechanisms a more reasonable

solution to handle noise instances. They focus on feature noise
rather than class noise in their study. In this investigation,
several important conclusions are drawn to deal with noise
in datasets. One of the most important conclusions is the
influence of feature noise on system performance is different
depending on which attribute is noisy. If the noisy feature is
highly correlated with the target feature, then the negative
impacts of feature noise will be higher. Therefore, the authors
recommend to design our own noise handling approach to
improve the data quality. We follow their advice and develop
a feature noise handling from our own perspective.

III. DATASET CHARACTERIZATION

In this section we describe the check-in dataset and explore
its features and characteristics. The dataset is provided by
Facebook, in one of the Kaggle competitions [5]. Facebook
created a 10 kilometer by 10 kilometer artificial world
consisting of over 108,000 places distinguished by an
identification number which is stored in place_id future.
There is no concept of person in the dataset and each row
of dataset represents a check-in instance recorded within the
border of provided area. For each instance, other information
is stored along with the identification of place, such as
check-in time, and location information of the device used to
check in. An overview of the dataset attributes along with
some samples are shown in Table L.

TABLE 1
OVERVIEW OF FEATURES IN CHECK-IN DATASET

’ row_id ‘ X ‘ y ‘ accuracy ‘ time ‘ place_id
0 0.7941 | 9.0809 54 470702 | 8523065625
1 5.9567 | 4.7968 13 186555 | 1757726713
2 8.3078 | 7.7968 74 322648 | 1137537235
3 7.3665 | 2.5165 65 704587 | 6567393236

The check-in dataset is fabricated by Facebook to resemble
location signals coming from mobile devices [S5], which is
complicated with noise and outlier instances. The location
information is expressed in physical coordinates of x and
y tuples simulating latitude and longitude of the location.
Consider a public business place in a city. Apparently, all
users do not check in from the same distance away from this
particular place. Thus check-in instances represent different
coordinates for each particular place and we do not have
access to the real coordinates of places.

There is an eccentric characteristic of location coordinates
in the dataset which is a considerable difference between x
spanning range and y spanning range for individual places. If
we magnify individual places’ coordinates, as it is indicated
in Figure 1, we will notice that the range of x is mainly
expanded because of outliers. We do not know why the
outliers have happened mainly to the x feature and rarely to
the y feature. Ultimately, this difference does not influence

Place_id = 9898127501

100 oo D -
[4
0 s
®
> 50 >g8
o7
00- | ! ! ! ! L | | | |
00 25 50 75 100 25 50 75 100
p 4 .
Place_id = 6051554924
100- anmome 080
. b
> 50 > ? Greodk %
.
9
a70-
00 s
00 0 100 14 2 4
X x
Place_id = 9453663854
100- 2
L 12 T 8.65- 4
° \.®
= 50] .60
8 L]
00- | 850-
o s 100 + s 100
x 7 x

Fig. 1. Check-in coordinates for random places represented in separate planes.
A magnified representation is added, as well. The larger points with darker
color represent a higher value of accuracy.

30000~

1e+07- [

20000~

count
count

5e+06i-

10000~

l

0 500 1000 1500 DI EéD EDIU ?éD WDbD
p_degree location accuracy
(@) (b)

0- Oe+00-

Fig. 2. Distribution diagrams of popularity degree and location accuracy.
Diagram (a) shows the number of places in the dataset based on popularity
degree, and diagram (b) indicates the distribution of location accuracy values
among all check-in instances.

our classification approach, but it benefits the algorithm. Less
correlated features better serve the classification algorithms
training.

The feature accuracy contains information about location
accuracy for each recorded check-in; however, this feature
is intentionally left vague [5]. A hypothesis about the
accuracy representation is the veracity degree of calculated
physical location of users in the GPS system. Factors like
weather condition, or surrounding buildings can disrupt the
communication between satellites and GPS signal receivers
in mobile devices. Therefore, the accuracy of estimated
locations of user may vary in the presence of named factors.
In Figure 1, larger points with darker color represent higher
accuracy. By considering our hypothesis, how can we explain
coordinates with very high accuracy that are located very

far from the majority of other coordinates? One possible
reasoning is a human-side error has happened. The user has
checked in from a longer distance away from the physical
location despite accurate computation of user location in the
GPS system. Therefore, outliers appear on the plane and we
cannot count on coordinates with high accuracy to locate
actual location of place_ids. According to the histogram of
accuracy distribution in Figure 2 (b) , the majority of check-in
instances represent a value of accuracy below 200 while the
range of values for accuracy is 1 to 1,033. Only 5.3% of
instances are recorded with an accuracy higher than 200.
Lets look at an interesting feature of the dataset. Places
where a large number of users check in are popular places
with the most number of repetition in the dataset; therefore,
a higher number of instances represent them in the dataset.
To demonstrate the distribution of check-in frequencies
for individual place_ids, we define p_degree variable as
popularity degree. This variable spans from 1 to 1,849 which
simply means the place with only one check-in record has a
popularity degree of 1, and the most popular place with the
largest number of check-ins has a popularity degree of 1,849.
Figure 2 (a) illustrates the distribution of places’ popularity
degree on the whole dataset. The diagram indicates that the
majority of places have been checked in less than 500 times
while there are places that are checked in as high as 1,800
times.

The other important feature in our check-in dataset is the time
feature which encompasses integer values spanning from 1
to 786,239. Examining some crucial time values, particularly
the largest recorded one, we are convinced that the integer
number represents the time interval and it is calculated in
minutes. The largest value of fime in the dataset is 786,239
which represents exactly one year and a half minus one
minute. We converted the integer numbers stored in time
feature into timestamp, then break it down into new features
such as hour, day, and month.

IV. DATA PREPROCESSING AND NOISE HANDLING

This section represents our methodology for dealing with
feature noise in location-based datasets. We select a random
400 meters by 200 meters area and represent the locations
of all check-in events in Figure 3 to demonestrate the level
of noise. In the figure, the locations of check-in events
are represented with different colors for different places.
Obviously, the noise level of this dataset is significantly high
and place borders are very fuzzy. To reduce feature noise
impacts on classification learning algorithm, we implemented
a practical method to correct feature noise instances and
avoided eliminating them from the dataset. We believe that
eliminating noise instances, especially when the level of noise
is high, not only does not improve the algorithm performance,
but also it may mislead the learning process. Noise instances
contain important information in their other features, whereas,
eliminating them causes a noticeable information loss. As
a result, features importance level changes in decision-

Fig. 3. All recorded check-ins in a random area of 400 meters by 200 meters.
Different colors represent different places

tree-based algorithms such as Random Forest [10]. Feature
importance level has a key role in splitting nodes decisions.
Hence, instead of eliminating noise, we cleaned them by
replacing feature noise inaccurate values with representative
values and reduced their misleading impacts on the learning
algorithm. The following sections demonstrates our feature
noise cleaning approach.

A. Cleansing Mislabeled Instances

We clean feature noise instances in the check-in dataset
to enhance the quality of training dataset. The goal of this
process is to reduce the impacts of feature noise on our
selected learning algorithm, Random Forest [10]. We believe
that this step has a significant influence on the performance
of generated model.

Noise appearance in the dataset is a consequence of mislabeled
instances. There are two general reasons why mislabeling
occurs. The first reason is the class feature has been incorrectly
labeled. The second reason is the value of one or more
other features are erroneous resulting in the instance being
placed into a wrong category. Depending on the reason of
mislabeling occurrence, one of two cleansing approaches may
be employed. Figure 4 illustrates the two approaches. For
the first reason of mislabeling, the noise instances need to
be relabeled so they will be categorized in the right class.
For instance, in Figure 4 (a) mislabeled points are corrected
based on an estimated classification border. In this approach,
an approximate classification border is required which can be
estimated with a density-based classification method as an ex-
ample. On the other hand, if the second reason for mislabeling
occurs, the second approach, illustrated in Figure 4 (b), can be
applied to cleanse mislabeled records. This approach cleanses
noise instances by correcting erroneous x and y values which
changes the physical location of instances without relabeling
them. Similar to the first approach, a hypothetical barrier is
required to evaluate the correctness of x and y. In check-in
dataset, the error in x and y features mainly appears because of
users’ desire to check-in from a large distance away from the
place’s physical location, or the GPS system miscalculation of
user actual location coordinates. Therefore, changing the value

R a)
I

Chefore) (b) Second Approach

Fig. 4. Noise cleansing approaches. (a) shows relabeling class errors and (b)
illustrates correcting the values of features other than class feature

of x and y does not ruin the check-in instances.

B. Statistical Noise Cleansing Method

In this section, we represent how the approximate guideline
for each place is determined individually so the outlier records
of each place can be separated from correct instances. This
module was executed using 8 CPUs and 64G memory utilizing
R vectorization property. The vectorization property speeds
up arithmetic calculations by avoiding the use of program-
ming loops. When the outliers (or noise instances) of places
were recognized, we cleaned their erroneous x and y values
by replacing them with representative values. Statistics and
probability distribution tools were employed to determine the
places’ guidelines. R vectorization property was utilized to
correct the erroneous values with representative values.
Statistics quartile concept was utilized to find places’ guide-
lines. The first and third quartile of both x and y values were
individually calculated for each place. Every point smaller
than first quartile or larger than third quartile in their x
and y value was marked as outlier. In fact, all the values
between the 25th percentile and 75th percentile of both x and
y were considered as correct values and everything else was
erroneous. Afterward, the means of x and y correct values were
calculated separately to be replaced as the representative value
for erroneous values. Figure 5 indicates all check-in instances
for three random places while their outliers are calculated with
this technique and are displayed with different color. This
noise (outlier) detection technique recognizes over 7.5 million
noise instances in the whole dataset which is 26.28% percent
of the data.

We individually calculated first quartile, third quartile, and
mean of x and y for each place utilizing R vector property
which took 14 minutes to compute for the whole dataset
using the platformdescribed earlier. Then we injected theses
values to the original dataset as new features. This step
requires a merge function which took 20 minutes to run.
Afterwards, we flagged outliers and stored them in a new
feature called isQutlier and applied conditional statements
which is implemented by R vectorization property. Consider

Fig. 5. Outliers of three random places displayed with different color. These
outliers are marked based on the first and third quartiles guidelines.

Fig. 6. Noise reduction preprocessing effect on a sample area with multiple
places. Places are represented with different color.

@1z and Qs as first and third quartiles of x, and)1y and
Qsy as first and third quartiles of y. The conditional statements
to set the outlier flag would be:

1sOutlier =] (x > Q12) & (z < Q3x)
&(y>Quy) & (v < Qsy) | 1)

True value of isOutlier indicates if the check-in instance is
an outlier for the represented place. The accumulated time for
labeling noise instances was 36 minutes using 8 CPU cores.
The accumulated time was 39 minutes to accomplish noise
detection and cleansing processes on the whole dataset, which
contains over 29 million rows. The simplicity of the approach
and vectorization property of R programming language are
the major runtime efficiency factors in the presented approach.
This method is applicable on other location-based noises.

V. IMPLEMENTATION AND EVALUATION

In this section, the effectiveness of our preprocessing feature
noise cleansing technique is evaluated. We generated two
Random Forest models, one was trained with noisy location
coordinates, and the other was trained with cleansed location
coordinates. We evaluated the effectiveness of our presented
noise cleansing approach by comparing the performance of
the two generated models. The models’ evaluation is based on
predicting the target feature in the test dataset and measuring
the difference between predicted values and the expected
values, which represents the Mean Squares Error (MSE).

Random Forest models were trained utilizing R randomForest
package which were executed using 16 CPU cores of Bigdog
cluster. The models were trained on three distinct samples
drawn from the original training dataset. Stratified sampling
technique was used to draw samples from places with variable
popularity degree, then regular samples were drawn from those
places’ check-in instances. Therefore, places with variable
degree of check-in frequencies were presented in each sample
dataset. In addition, with this sampling technique the ratio
of the number of samples to the number of unique places
remained close to the original training dataset.

In sampling for the Random Forest algorithm, increasing the
sample size does not necessarily lead to a better model,
although the performance may improve. In contrast, the im-
provement in the model performance can be a result of over-
fitting. Increasing the sample size decreases the randomness
of samples, and as a result, the Random Forest trees will be
more similar to each other and the model tends to overfit.
Additionally, with a large number of samples or number of
classes, randomForest R package encounters execution halt. To
explain the cause of this issue consider nSample as the number
of dataset samples, and nClass as the number of classes. In
the randomForest algorithm structure, the value of (nSample x
nClass) is stored in an integer variable; therefore, if this value
becomes very large, the algorithm execution will be halted
due to integer overflow error. Table II represents the trained
classifiers on drawn samples from the original dataset along
with their performance and training details. The outcome of
the trained models indicated a considerable improvement in
model performance after applying the feature noise handling
technique presented in previous section. Most noise handling
mechanisms are focused on class noise. However, the studied
check-in dataset contains a high level of feature noise. The
polluted features are the location coordinates. Therefore, most
noise handling mechanisms are not effective on our check-in
dataset.

We also ran a ranger implementation of the Random Forest on
one of the samples and compared its runtime and performance
with parallel randomForest. Table III compares the results of
the two packages of Random Forest implementations. As it is
presented in the table, parallel randomForest provides better
performance than ranger with a considerably shorter runtime.

VI. CONCLUSION

To summarize the main contribution of this work, the goal
of reducing feature noise impacts on the machine learning
algorithm training is achieved. The proposed technique fits
into the datasets with the location coordinates representing the
physical location; therefore, it is applicable on other datasets
with location feature noise. A noise handling technique is
essential in the check-in big datasets with high level of noise.
Instead of employing other noise handling mechanisms,
we designed and developed our preprocessing feature noise
handling approach to correct feature noise instances without
eliminating them from the dataset. Handling the features

TABLE II
EVALUATION OF THE RANDOM FOREST CLASSIFIERS. 16 CPU CORESARE
UTILIZED. NCLASS IS THE NUMBER OF UNIQUE PLACES IN EACH SAMPLE.

Samples Sample-1 Sample-2 Sample-3
Sample Size 174,181 250,778 274,206
Train Size 121,927 175,545 191,944
Test Size 52,254 75,233 82,262
nclass 943 1257 1,357
sample size (o the no. 184.70 199.50 202.06
of unique places ratio
Random Random Random
R k
package Forest Forest Forest
Trglmng Time 12 o4 27
(in minute)
MSE Before 13.49% 13.11% 14.24%
Cleansing
MSE After 4.93% 4.85% 4.85%
Cleansing
Correctly Predicted 86.50% 86.88% 85.76%
before Cleansing
Correctly Predicted 95.06% 95.15% 95.14%
After Cleansing
TABLE IIT

R PARALLEL randomForest PACKAGE VS. ranger PACKAGE. nClass 1S
CLASS NUMBER IN EACH SAMPLE.8 CPU CORES ARE UTILIZED.

Sample size: 274,206
Train Size: 191,944
Test Size: 82,262
nClass: 1,357

R package Parallel randomForest ranger

Training Time 27 minutes 3.5 hours
MSE 4.85% 6.31%
Correctly Predicted 95.14% 93.68%

noise significantly enhanced the classifier’s learning process
and accordingly enhanced the proposed Random Forest model
performance.

In training Random Forest model, the parallel R randomForest
package generated the classifier faster and more accurate
than R ranger package. Although according to [15] the
ranger package has better runtime and performance for
high-dimensional datasets, it is not as effective as parallel
randomForest for datasets with large number of class levels.
The represented method can gradually move to deeper
levels in future works. For example, the value of erroneous
coordinates can be replaced with a more representative value
instead of the mean, or the borders of places can be defined
utilizing a density-based classifier.

Finally, we draw the following conclusions for interested
readers to deal with noise: 1) Determine the type of noise:
class noise or feature noise 2) For feature noise try to design
your own handling mechanism by determining the cause of
noise appearance 3) Be aware of the over cleansing impacts
and indicate a reasonable cleansing threshold (guideline).

ACKNOWLEDGMENT

The authors would like to thank Dr. Soroosh Sohangir for
his thoughtful guidance and Tom Imboden for his generous
sharing of computing resources to accomplish this study.
This work used the Extreme Science and Engineering
Discovery Environment (XSEDE), which is supported by
National Science Foundation grant number ACI-1053575.
This effort was also supported by Southern Illinois University
(SIU) which designated research funds.

REFERENCES

[1] M. Flintham, R. Anastasi, S. Benford, A. Drozd, J. Mathrick, D. Row-

land, A. Oldroyd, J. Sutton, N. Tandavanitj, M. Adams et al., “Uncle

roy all around you: mixing games and theatre on the city streets.” in

DiGRA Conference, 2003.

W. Broll, J. Ohlenburg, I. Lindt, I. Herbst, and A.-K. Braun, “Meet-

ing technology challenges of pervasive augmented reality games,” in

Proceedings of 5th ACM SIGCOMM workshop on Network and system

support for games. ACM, 2006, p. 28.

[3] H. Gao and H. Liu, “Data analysis on location-based social networks,”

in Mobile social networking. Springer, 2014, pp. 165-194.

A. Noulas, S. Scellato, N. Lathia, and C. Mascolo, “Mining user mobility

features for next place prediction in location-based services,” in Data

mining (ICDM), 2012 IEEE 12th international conference on. IEEE,

2012, pp. 1038-1043.

kaggle. Facebook v: Predicting check ins. [Online].

http://www.kaggle.com/c/facebook-v-predicting-check-ins

[6] R. Y. Wang, V. C. Storey, and C. P. Firth, “A framework for analysis
of data quality research,” IEEE transactions on knowledge and data
engineering, vol. 7, no. 4, pp. 623-640, 1995.

[71 R. Y. Wang and D. M. Strong, “Beyond accuracy: What data quality
means to data consumers,” Journal of management information systems,
vol. 12, no. 4, pp. 5-33, 1996.

[8] B. Frénay and M. Verleysen, “Classification in the presence of label
noise: a survey,” IEEE transactions on neural networks and learning
systems, vol. 25, no. 5, pp. 845-869, 2014.

[9] X.Zhu and X. Wu, “Class noise vs. attribute noise: A quantitative study,”

Artificial Intelligence Review, vol. 22, no. 3, pp. 177-210, 2004.

L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.

5-32, 2001.

J. R. Quinlan, “Induction of decision trees,” Machine learning, vol. 1,

no. 1, pp. 81-106, 1986.

P. Jeatrakul, K. W. Wong, and C. C. Fung, “Data cleaning for clas-

sification using misclassification analysis,” Journal of Advanced Com-

putational Intelligence and Intelligent Informatics, vol. 14, no. 3, pp.

297-302, 2010.

D. R. Wilson and T. R. Martinez, “Reduction techniques for instance-

based learning algorithms,” Machine learning, vol. 38, no. 3, pp. 257—

286, 2000.

D. L. Wilson, “Asymptotic properties of nearest neighbor rules using

edited data,” IEEE Transactions on Systems, Man, and Cybernetics,

vol. 2, no. 3, pp. 408-421, 1972.

M. N. Wright and A. Ziegler, “ranger: A fast implementation of

random forests for high dimensional data in c++ and r,” arXiv preprint

arXiv:1508.04409, 2015.

[2

—

[4

=

[5 Available:

(10]

[11]

[12]

[13]

[14]

[15]

